Extended Symbolic Dynamics in Bistable Cml: Existence and Stability of Fronts
نویسندگان
چکیده
We consider a diffusive Coupled Map Lattice (CML) for which the local map is piece-wise affine and has two stable fixed points. By introducing a spatiotemporal coding, we prove the one-to-one correspondence between the set of global orbits and the set of admissible codes. This relationship is applied to the study of the (uniform) fronts’ dynamics. It is shown that, for any given velocity in [−1, 1], there is a parameter set for which the fronts with that velocity exist and their shape is unique. The dependence of the velocity of the fronts on the local map’s discontinuity is proved to be a Devil’s staircase. Moreover, the linear stability of the global orbits which do not reach the discontinuity follows directly from our simple map. For the fronts, this statement is improved and as a consequence, the velocity of all the propagating interfaces is computed for any parameter. The fronts are shown to be also nonlinearly stable under some restrictions on the parameters. Actually, these restrictions follow from the co-existence of uniform fronts and non-uniformly travelling fronts for strong coupling. Finally, these results are extended to some C local maps.
منابع مشابه
Fronts between periodic patterns for bistable recursions on lattices
Bistable space-time discrete systems commonly possess a large variety of stable stationary solutions with periodic profile. In this context, it is natural to ask about the fate of trajectories composed of interfaces between steady configurations with periodic pattern and in particular, to study their propagation as traveling fronts. Here, we investigate such fronts in piecewise affine bistable ...
متن کاملFronts and Interfaces in Bistable Extended Mappings
We study the interfaces’ time evolution in one-dimensional bistable extended dynamical systems with discrete time. The dynamics is governed by the competition between a local piece-wise affine bistable mapping and any couplings given by the convolution with a function of bounded variation. We prove the existence of travelling wave interfaces, namely fronts, and the uniqueness of the correspondi...
متن کاملExistence and Non-existence of Transition Fronts for Bistable and Ignition Reactions
We study reaction-diffusion equations in one spatial dimension and with general (spaceor time-) inhomogeneous mixed bistable-ignition reactions. For those satisfying a simple quantitative hypothesis, we prove existence and uniqueness of transition fronts, as well as convergence of “typical” solutions to the unique transition front (the existence part even extends to mixed bistable-ignition-mono...
متن کاملGlobal asymptotic stability of bistable traveling fronts in reaction-diffusion systems and their applications to biological models
This paper deals with the global asymptotic stability and uniqueness (up to translation) of bistable traveling fronts in a class of reaction-diffusion systems. The known results do not apply in solving these problems because the reaction terms do not satisfy the required monotone condition. To overcome the difficulty, a weak monotone condition is proposed for the reaction terms, which is called...
متن کاملBistable transition fronts in R
This paper is chiefly concerned with qualitative properties of some reaction-diffusion fronts. The recently defined notions of transition fronts generalize the standard notions of traveling fronts. In this paper, we show the existence and the uniqueness of the global mean speed of bistable transition fronts in RN . This speed is proved to be independent of the shape of the level sets of the fro...
متن کامل